OPERATION PRINCIPLE

A. Solids laden air or gases enter the unit at the hopper or housing inlet.

B. Air passes through the filter media.

C. Solids are retained on the filter media surface.

D. Cleaning cycle consists of a momentary blast of 90-100 psig compressed air:
 1. Momentarily taking a row of bags off stream through pressure reversal.
 2. Flexing filter bags.
 3. Solids are released to fall towards hopper and through rotary valve or other discharge equipment.
RECEIVING YOUR UNIT

Prior to accepting shipment, care must be taken to inspect all equipment received both for proper count and for damage. Any and all irregularities must be noted on the carrier’s copy of the shipping receipt to assist in settling any claims for damage or shortages. All equipment is shipped FOB point of origin whether on a prepaid or collect freight basis.

ANY CLAIM FOR DAMAGE IN TRANSIT OR SHORTAGES MUST BE BROUGHT AGAINST THE CARRIER BY THE PURCHASER.

Once your claim has been filed with the carrier, contact CAMCORP to notify us of the problem(s) and then we will advise the appropriate repair procedure or recommend it to be returned to the factory depending on the extent of damage.

INSPECTION OF UNIT

Housing, Air Header and Timer Assembly: Particular attention should be paid to the sheet metal housing of your collector. The unit should be inspected for dents, cracks or rips. A dented housing may seriously affect the structural integrity of the unit. The air header and timer assembly are very delicate pieces of the unit and must be checked carefully for any signs of impact, warpage or loose fittings. If any of these signs are present, note them on the shipping receipt and notify CAMCORP immediately. The entire unit should be checked against the certified drawings for correctness and the manufacturer notified immediately if there are any discrepancies. No corrections may be made without the expressed written consent of CAMCORP.

Components: A count should be made of all pieces received and this should be verified against the carrier’s manifest. Boxes should be inspected for rough handling, which may have resulted in hidden damage.
ON SITE STORAGE RECOMMENDATIONS

I. Baghouse, Bin Vent, Filter Receiver, Dirty Air Hopper and Housing

1. Housing can be stored outside.
2. Equipment must be blocked up to keep the flanges out of the dirt.
3. Many units are supplied with a plain finish bare steel interior. If storage of more than two weeks is anticipated, the interior should be prime coated before storage.
4. Covering the unit with a tarp is recommended to keep the interior from rusting or corroding as well as keeping the outer finish in new condition. However, the tarp is not absolutely necessary.

II. Baghouse, Bin Vent, Filter Receiver, and Clean Air Plenum

1. Unit can be stored outside.
2. Air header and diaphragm valves must be tarped for weather protection.
3. Positioned unit so water will not get in or remain inside the tube sheet area.
4. Unit must be blocked up to keep the flanges, bag cups, venturis and air header out of water and dirt.
5. Ports on diaphragm valves must be plugged and taped to keep insects, dirt and moisture out.
6. For extended storage (more than 4 weeks), it is recommended to remove the timer panel and solenoid assembly (if mounted). These components should be stored inside a cool dry area along with the copper or black nylon tubing. The solenoids should have all ports capped and taped to protect from insects, dirt and moisture.
7. The unit should be tarped but is not absolutely necessary.

III. Bags & Cages

1. Bags must be stored inside a cool dry area protected from moisture, rodents and insects.
2. For extended storage the boxes for the bags should be wrapped with plastic wrap or stretch wrap to protect from moisture.
3. If the bags get wet for any reason, immediately lay them out with plenty of ventilation to dry in order to prevent mold and mildew.
4. It is recommended to store the cages inside a dry area if at all possible.
5. If an inside location is not available, cages can be stored outside as long as they are covered by a tarp.
6. Cages are generally stored horizontally on pallets to keep them off the ground.
7. If cages can be stored horizontally, do not stack over three boxes high.
8. If the job site is in an area that may receive a significant snow load, the cages must be stored vertically in order to prevent being crushed by the weight of the snow. Do not stack more than one box high
ON SITE STORAGE RECOMMENDATIONS (continued)

IV. Accessory Parts

1. This includes all gauges, bag clamps, nylon or copper tubing, valves, gaskets and other parts not specifically called out.
2. These items should be stored inside a cool dry place protected from moisture, insects and rodents.

V. Fan and Fan Accessories

1. Fans can be stored outside on a pallet or skid to keep them out of water and dirt.
2. Fan silencers, outlet dampers and inlet boxes should also be tarped and stored on a pallet or skid.

VI. Ducting

1. Ducting can be stored outside on a pallet or skid to keep it off the ground. It should be positioned so that water does not sit on or in the ducting.
2. If ducting is unpainted carbon steel, it should be at least primed coated before storage.
3. If ducting is already finish coated, it should be tarped to protect the finish but is not absolutely necessary.

VII. Knife Gate

1. All limit switches, solenoids and air cylinder ports must be capped and taped to prevent any moisture or dirt from entering.
2. Equipment can sit outside provided it is covered with a tarp and is on a pallet or skid to keep it out of water and dirt.

VIII. Isolation Dampers

1. All limit switches, solenoids and air cylinder ports must be capped and taped to prevent any moisture or dirt from entering.
2. Equipment can sit outside provided it is covered with a tarp and is on a pallet or skid to keep it out of water and dirt.
ON SITE STORAGE RECOMMENDATIONS (continued)

IX. Rotary Valve

1. Rotor and interior of valve should be well oiled with vegetable oil to prevent rust and to maintain compatibility with product.
2. Unit can be stored outside provided it is covered with a tarp and is on a pallet or skid to keep it out of water and dirt.

X. Butterfly (Wafer Valve)

1. All limit switches, solenoids and air cylinder ports must be capped and taped to prevent any moisture or dirt from entering.
2. Unit can be stored outside provided it is covered with a tarp and is on a pallet or skid to keep it out of water, dirt and sunlight.

XI. Level Indicators

- Store these items inside a protected cool dry area.

XII. AC Inverters

- Store these items and all other electrical controls inside a protected cool dry area.
SETTING UP YOUR UNIT

CAMCORP dust collectors are shipped either in one piece, fully assembled or in two or more sections depending on the unit size and weight. Before attempting to move the dust collector or any of its sections, review both the certified general assembly drawing supplied from CAMCORP and the rigging and lifting guidelines included in this manual. Become familiar with the size and number of sections to be assembled, the orientation of inlet(s), outlet(s), access door(s) and compressed air header(s), as well as the number and location of lifting lugs.

Dust collectors of this type are manufactured from steel sheets and are quite flexible. Therefore, even though care has been taken to maintain dimensional accuracy and squareness, some difficulty should be anticipated and temporary bracing in the field may be required.

The following sequential procedure will help to minimize any assembly difficulties:

STEP 1: Set up the supporting steel for the dust collector level and square. Precision at this point will greatly help facilitate erection and bolt hole alignment of the dust collector sections to follow.

STEP 2: Place the hopper with its girth channel on the supporting steel work. Check for squareness, and for bolt hole alignment between the hopper flange and the girth channel. Apply the appropriate RTV silicone caulk around the periphery of the hopper flange, one bead on each side of the bolt holes.

STEP 3: Lift the dusty air plenum, with the tube sheet, into place. DO NOT LOWER THE PLENUM ONTO THE HOPPER FLANGE UNTIL ALIGNMENT IS ACCOMPLISHED. The silicone caulk makes horizontal movement very difficult once a load is applied. With the plenum suspended over the hopper ½” to 1”, begin bolt hole alignment, starting at the center of the plenum and working toward the ends by using tapered drift pins. If the wall(s) has flexed out of square, it will be necessary to pry or pull it back into alignment. Depending on the size of the unit and the degree of difficulty, hydraulic jacks and come-alongs may be required. When the mating holes are properly aligned, finish lowering the plenum. Install the remaining bolts, washers and nuts and torque to the appropriate specifications.
SETTING UP YOUR UNIT (continued)

STEP 4: Check the top of the dusty air plenum for squareness and bolthole alignment between the dusty air plenum and the tube sheet. Make sure that the silicone caulk has been applied between the top flange of the dusty air plenum and the underside of the tube sheet flange. Next, apply the caulk around the periphery of the topside of the tube sheet flange, one bead to each side of the boltholes.

STEP 5: Lift the clean air plenum into place and assemble in the same fashion as in STEP 3. Again, do not lower the clean air plenum completely until preliminary alignment is accomplished. Start drift pin alignment at the center of the plenum on the compressed air header side since the header makes access to the flange more limited. When alignment is complete, install the remaining bolts, washers and nuts and torque to the appropriate specifications.

All CAMCORP dust collectors are provided with lifting lugs for ease in handling of the units during field erection and installation. The number and location of these lifting lugs will vary depending on the model, size and weight of the dust collector. Before attempting to rig and lift your dust collector, review the certified general assembly drawing supplied from CAMCORP to verify the number and location of lifting lugs, as well as visually checking this information on the actual unit. Large units are frequently shipped in several sections, so check the lifting lugs provided on each section. If these cannot be used or there is some question about lifting lug location, consult the engineering staff at CAMCORP for proper location since proper care must be taken to prevent damage to housing or it components.

Rigging and Lifting Guidelines

1. Do not lift the dust collector by any attachments other than the lifting lugs provided.

2. Use all of the lifting lugs provided on the dust collector or a section of the dust collector, when making a lift.

3. If the lifting lugs are located below the roofline of the dust collector or below the top of the section of the dust collector, a vertical pull must be made to avoid crushing the top of the unit. Use spreader beams to accomplish this vertical pull.
SETTING UP YOUR UNIT (continued)

4. Attach tag lines at several locations to help in controlling the unit when lifted and to prevent spinning or swinging.

5. The dust collector should be lifted and lowered at a slow, uniform rate and not allowed to bounce or joggle since this can cause excessive impact stresses at the lift points.

Compressed Air Manifold: CAMCORP ships the compressed air manifold installed complete with diaphragm valves and solenoid enclosure(s), except when units are over legal shipping width with them in place.

Doors and Flanges: Hold-downs on doors should only be hand tightened. Excessive pressure can distort the door panel itself resulting in leakage. All bolts on flanges should be tight. All ports in the dust collector, not being used, must be plugged prior to start-up.

Electrical: A 120 volt 60 Hertz circuit is required to operate the dust collector’s pulse-jet cleaning system. This timer must be wired according to the wiring diagrams and be provided with a circuit that is free from transient currents. The timer has a feature call “Demand Pulse” that allows the output terminals to be energized and de-energized by the high and low set points of a differential pressure switch such as a Dwyer Photohe lic Series 3000. Refer to the enclosed timer-wiring diagram for proper wiring. The “Demand Pulse” terminals are marked “Pressure Switch”. Do not over fuse.

The pulse timer board has an adjustable pulse duration and interval (time between valves firing) settings. Before applying power to the timer, always check these settings according to the table below. Since there are many variances in operations and conditions, these are presented only as initial start-up guidelines. If you experience problems in cleaning of the filter bags, please contact CAMCORP.

<table>
<thead>
<tr>
<th>VALVE SIZE</th>
<th>PULSE DURATION</th>
<th>INTERVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾”</td>
<td>.10 to .12 seconds</td>
<td>20 to 25 seconds</td>
</tr>
<tr>
<td>1”</td>
<td>.10 to .12 seconds</td>
<td>20 to 25 seconds</td>
</tr>
<tr>
<td>1-½”</td>
<td>.06 to .08 seconds</td>
<td>20 to 25 seconds</td>
</tr>
</tbody>
</table>
Features

- Digital Timing Circuitry: Allows for stable timing from -40°F to 150°F temperature range.
- Pulse Time: Line synchronized to eliminate 8 milliseconds triac turn off variation.
- 10 A Amp-400/600V Output Triacs: For maximum protection against output shorts. 200 VA load rating.
- RTV Coating: Conformally coated for protection against vibration, humidity, and contamination.
- 2 Modes of Operation: Can be operated continuously or "on demand" via external pressure switch.
- Field Selectable: For numbers of outputs required.
- LED Indicators: For compartment being cleaned indication.
- Rugged Timing Adjustments: Large stable potentiometers are used for "on" and "off" time adjustments.
- Metal Chassis Provided: For mounting directly into NEMA-4 box.
- Timer Life Tested for 24 Hours: To eliminate field failures.
- Input Protection: 30 joule metal oxide varistor.
- One Year Warranty: Warranted to be free from defects in materials or workmanship for one year from date of purchase.
- Made in USA.

AC Input, Pulse Cleaning of Bag House Dust Collectors
Models DNC-T2003 thru DNC-T2032

Operating Logic: The control can function in 2 modes:

Continuous Mode: The pressure switch terminals are shorted. Upon application of input voltage, the control activates output #1 after the preset off time. It will continue to activate outputs sequentially until input voltage is removed.

On Demand Mode: The pressure switch terminals are connected to an isolated set of contacts of a differential pressure switch. The control will activate the outputs sequentially whenever the pressure switch contacts are closed. When the pressure switch contacts open, the output sequencing stops. Re-closing of the contacts will cause the control to resume activating the outputs.

Program wire allows the user to select the maximum number of outputs to be activated.

Specifications

Time Delay

On-Time: Adjustable from 50 to 500 milliseconds.
Off-Time: Range A - adjustable from 1.5 to 30 seconds; Range B - adjustable from 8.5 to 180 seconds.
Note: Range S designates customer specified time range. Consult factory for parameters.

Repeatability: ± 3% over temperature and voltage ranges.

Input

Operating Voltage: 120 ± 10%, 220 ±10% VAC.
Frequency: 50/60 Hz.
Power Consumption: 2 VA Max.

Wiring diagram to Facilitate Expanded Output Mode

Output

Type: Solid-state switch (Triac).
Switch Rating: 200 VA maximum per output.
Protection

Transistor Voltage: 30 joule metal oxide varistor.
Short Circuit Protection: 3 Amp. fuse.

Environmental

Operating Temperature: -40°C to 66°C.
Storage Temperature: -40°C to 70°C.
DNC-T2003 through DNC-T2032 120VAC Input Voltage

<table>
<thead>
<tr>
<th>Maximum No. of Outputs</th>
<th>Dimensions</th>
<th>Size of NEMA-4 Encls. Required</th>
<th>Programmable No. of Outputs</th>
<th>Off Time in Seconds</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6(\frac{3}{4})" x 4(\frac{3}{4})" x 6(\frac{1}{4})" x 4(\frac{3}{4})"</td>
<td>8" x 6" x 3(\frac{3}{4})"</td>
<td>1 - 3</td>
<td>1.5 - 30</td>
<td>DNC-T2003-A10</td>
</tr>
<tr>
<td>6</td>
<td>8(\frac{3}{4})" x 6(\frac{3}{4})" x 8(\frac{3}{4})" x 6(\frac{3}{4})"</td>
<td>10" x 8" x 4"</td>
<td>2 - 6</td>
<td>1.5 - 30</td>
<td>DNC-T2006-A10</td>
</tr>
<tr>
<td>10</td>
<td>8(\frac{3}{4})" x 6(\frac{3}{4})" x 8(\frac{3}{4})" x 6(\frac{3}{4})"</td>
<td>10" x 8" x 4"</td>
<td>3 - 10</td>
<td>1.5 - 30</td>
<td>DNC-T2010-A10</td>
</tr>
<tr>
<td>20</td>
<td>10(\frac{3}{4})" x 8(\frac{3}{4})" x 10(\frac{3}{4})" x 8(\frac{3}{4})"</td>
<td>12" x 10" x 5"</td>
<td>11 - 20</td>
<td>1.5 - 30</td>
<td>DNC-T2020-A10</td>
</tr>
<tr>
<td>32</td>
<td>12(\frac{3}{4})" x 10(\frac{3}{4})" x 12(\frac{3}{4})" x 10(\frac{3}{4})"</td>
<td>14" x 12" x 6"</td>
<td>17 - 32</td>
<td>1.5 - 30</td>
<td>DNC-T2032-A10</td>
</tr>
</tbody>
</table>

Note: Special time ranges are available with the following maximum to minimum time ratio restrictions: ON Time - 10:1, Off Time - 20:1

DNC-T2006 through DNC-T2032 220VAC Input Voltage

<table>
<thead>
<tr>
<th>Maximum No. of Outputs</th>
<th>Dimensions</th>
<th>Size of NEMA-4 Encls. Required</th>
<th>Programmable No. of Outputs</th>
<th>Off Time in Seconds</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6(\frac{3}{4})" x 6(\frac{3}{4})" x 6(\frac{1}{4})" x 4(\frac{3}{4})"</td>
<td>10" x 8" x 4"</td>
<td>2 - 6</td>
<td>1.5 - 30</td>
<td>DNC-T2006-A220</td>
</tr>
<tr>
<td>10</td>
<td>6(\frac{3}{4})" x 6(\frac{3}{4})" x 6(\frac{1}{4})" x 4(\frac{3}{4})"</td>
<td>10" x 8" x 4"</td>
<td>3 - 10</td>
<td>1.5 - 30</td>
<td>DNC-T2010-A220</td>
</tr>
<tr>
<td>20</td>
<td>8(\frac{3}{4})" x 8(\frac{3}{4})" x 10(\frac{3}{4})" x 8(\frac{3}{4})"</td>
<td>12" x 10" x 5"</td>
<td>11 - 20</td>
<td>1.5 - 30</td>
<td>DNC-T2020-A220</td>
</tr>
<tr>
<td>32</td>
<td>12(\frac{3}{4})" x 10(\frac{3}{4})" x 12(\frac{3}{4})" x 10(\frac{3}{4})"</td>
<td>14" x 12" x 6"</td>
<td>17 - 32</td>
<td>1.5 - 30</td>
<td>DNC-T2032-A220</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Enclosure For:</th>
<th>Dimensions</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNC-T2003</td>
<td>8" x 6" x 3(\frac{3}{4})"</td>
<td>BOX-A0806-CHNF</td>
</tr>
<tr>
<td>DNC-T2006</td>
<td>10" x 8" x 4"</td>
<td>BOX-A1008-CHNF</td>
</tr>
<tr>
<td>DNC-T2010</td>
<td>10" x 8" x 4"</td>
<td>BOX-A1008-CHNF</td>
</tr>
<tr>
<td>DNC-T2020</td>
<td>12" x 10" x 5"</td>
<td>BOX-A1210-CHNF</td>
</tr>
<tr>
<td>DNC-T2032</td>
<td>14" x 12" x 6"</td>
<td>BOX-A1412-CHNF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pilot Lamp</th>
<th>NEMA-4 Rated Red Light</th>
<th>ASL-00RED-NEMA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Switch</td>
<td>NEMA-4 Rated w/Legend Plate</td>
<td>MSW-0DPST-011</td>
</tr>
<tr>
<td>Alternate Action Dual Coil Latch Relay</td>
<td>KDD-LATCH-120AC</td>
<td></td>
</tr>
<tr>
<td>Socket For Latch Relay</td>
<td>MS-06D-01P-012</td>
<td></td>
</tr>
</tbody>
</table>

National Controls Corporation offers NEMA 4 type enclosures for mounting our controls. These enclosures are made of heavy gauge steel and have a continuous hinge cover. All seams are continuously welded. The finish is gray hammer-tone enamel inside and out, over phosphatized surfaces.

Note: In order to keep abreast of the latest technology, National Controls Corporation reserves the right to change components and/or design of controls without notice.
SETTING UP YOUR UNIT (continued)

The firing sequence of the diaphragm valves on the dust collector should be set so that no two adjacent rows of bags fire in succession to insure maximum cleaning and life of the filter media. This can only be achieved when wiring the pulse timer board to the solenoid valves. If you are experience a high-pressure drop across the filter bags in your dust collector, the pulse interval should be reduced.

Apply electrical power to the timer and make sure that it is cycling completely through all rows of the unit. In some cases, the timer panel may have more “positions” than required, in which case, the position selector cable needs to be attached to the proper numerical value corresponding to the number of diaphragm valves on the unit.

If your dust collector was shipped via common carrier rather than a contract hauler, there is a possibility that the solenoid enclosure was not shipped installed on the unit. If this is the case, there is a mounting plate welded on the housing or the air header with the bolt pattern of the enclosure already drilled. Bolt the enclosure and install the nylon (or copper) tubing with the fittings provided, making sure that the solenoids are hooked to their corresponding diaphragm valve.

Valves and Piping: After the unit has been installed, the diaphragm valves should be checked to make sure that the port marked “IN” is assembled to the compressed air manifold. The “IN” connection of the solenoid valve is connected to the diaphragm valve by means of ¼” nylon or ¼” copper refrigeration tubing. Each nut on the brass compression fittings should be checked for tightness before the compressed air manifold is pressurized. In most cases a slip fit fitting has been used. The integrity of the nylon tubing inside each fitting should be checked by pulling gently on each tube. If the tube pulls out, simply push it back into the fitting until it will not go any further. The solenoids are shipped with a plastic plug in the discharge side of the valve. These plugs must be removed for proper operation.

Gauges: The differential pressure gauge, mounting bracket, fittings and tubing are usually shipped loose in a box with the dust collector. When installing, make sure that the high-pressure port of the gauge is connected below the tube sheet and the low-pressure port is connected above the tube sheet on the dust collector. There are pipe couplings welded on the side of the dust collector for these connections. After the differential pressure gauge is permanently mounted, the gauge needs to be zeroed prior to connecting the tubing to the gauge.

Auxiliary Equipment: All auxiliary equipment must be installed according to its manufacturer’s specifications and interlocked with the entire system as needed. Direction of rotation of each item must be checked prior to start-up of the entire system.
SPECIFICATIONS

Weight: 1 lb. 2 oz.
Finish: Baked dark gray enamel.
Connections: 1/8 N.P.T high and low pressure taps, duplicated, one pair side and one pair back.
Accuracy: Plus or minus 2% of full scale, at 70°F. (Model 2000-0, 3%; 2000-00, 4%).
Pressure Rating: 15 PSI.
Ambient Temperature Range: 20° to 140°F
Standard gage accessories include two 1/8" N.P.T. plugs for duplicate pressure taps, two 1/8" pipe thread to rubber tubing adapters, and three flush mounting adapters with screws.

Caution: For use with air or compatible gases only.
For repeated over-ranging or high cycle rates, contact factory.
Hydrogen Gas Precautionary Note: The rectangular rare earth magnet used in the standard gage may not be suitable for use with hydrogen gas since a toxic and explosive gas may form. For hydrogen service, consult the factory for an alternate gage construction.
1. Select a location free from excessive vibration and where the ambient temperature will not exceed 140°F. Also, avoid direct sunlight which accelerates discoloration of the clear plastic cover. Sensing lines may be run any necessary distance. Long tubing lengths will not affect accuracy but will increase response time slightly. Do not restrict lines. If pulsating pressures or vibration cause excessive pointer oscillation, consult the factory for ways to provide additional damping.

2. All standard Magnehelic gages are calibrated with the diaphragm vertical and should be used in that position for maximum accuracy. If gages are to be used in other than vertical position, this should be specified on the order. Many higher range gages will perform within tolerance in other positions with only rezeroing. Low range Model 2000-00 and metric equivalents must be used in the vertical position only.

3. Surface Mounting

Locate mounting holes, 120° apart on a 4-1/8" dia. circle. Use No. 6-32 machine screws of appropriate length.

4. Flush Mounting

Provide a 4 3/8" dia. opening in panel. Insert gage and secure in place with No. 6-32 machine screws of appropriate length, with adaptors, Part No. 360c, firmly secured in place. To mount gage on 1 1/4"-2" pipe, order optional A-610 pipe mounting kit.

5. To zero the gage after installation

Set the indicating pointer exactly on the zero mark, using the external zero adjust screw on the cover at the bottom. Note that the zero check or adjustment can only be made with the high and low pressure taps both open to atmosphere.

Operation

Positive Pressure: Connect tubing from source of pressure to either of the two high pressure ports. Plug the port not used. Vent one or both low pressure ports to atmosphere.

Negative Pressure: Connect tubing from source of vacuum or negative pressure to either of the two low pressure ports. Plug the port not used. Vent one or both high pressure ports to atmosphere.

Differential Pressure: Connect tubing from the greater of two pressure sources to either high pressure port and the lower to either low pressure port. Plug both unused ports.

When one side of gage is vented in a dirty, dusty atmosphere, we suggest an A-331 Filter Vent Plug be installed in the open port to keep inside of gage clean.

a. For portable use or temporary installation, use 1/8" pipe thread to rubber tubing adapter and connect to source of pressure with rubber or Tygon tubing.

b. For permanent installation, 1/4" O.D., or larger, copper or aluminum tubing is recommended. See accessory bulletin S-101 for fittings.
Maintenance: No lubrication or periodic servicing is required. Keep case exterior and cover clean. Occasionally disconnect pressure lines to vent both sides of gage to atmosphere and re-zero. Optional vent valves, (bulletin S-101), should be used in permanent installations.

Calibration Check: Select a second gage or manometer of known accuracy and in an appropriate range. Using short lengths of rubber or vinyl tubing, connect the high pressure side of the Magnehelic gage and the test gage to two legs of a tee. Very slowly apply pressure through the third leg. Allow a few seconds for pressure to equalize, fluid to drain, etc., and compare readings. If accuracy unacceptable, gage may be returned to factory for recalibration. To calibrate in the field, use the following procedure.

Calibration:
1. With gage case, P/N 1, held firmly, loosen bezel, P/N 4 by turning counterclockwise. To avoid damage, a canvas strap wrench or similar tool should be used.
2. Lift out plastic cover and "O" ring.
3. Remove scale screws and scale assembly. Be careful not to damage pointer.
4. The calibration is changed by moving the clamp, P/N. 70-b. Loosen the clamp screw(s) and move slightly toward the helix if gage is reading high, and away if reading low. Tighten clamp screw and install scale assembly.
5. Place cover and O-ring in position. Make sure the hex shaft on inside of cover is properly engaged in zero adjust screw, P/N 230-b.
6. Secure cover in place by screwing bezel down snug. Note that the area under the cover is pressurized in operation and therefore gage will leak if not properly tightened.
7. Zero gage and compare to test instrument. Make further adjustments as necessary.

Caution: If bezel binds when installing, lubricate threads sparingly with light oil or molybdenum disulphide compound.

Warning: Attempted field repair may void your warranty. Recalibration or repair by the user is not recommended. For best results, return gage to the factory. Ship prepaid to:
Dwyer Instruments, Inc.
Attn. Repair Dept.
55 Ward St.
Wakarusa, IN 46573

Trouble Shooting Tips:
- Gage won't indicate or is sluggish.
 1. Duplicate pressure port not plugged.
 2. Diaphragm ruptured due to overpressure.
 3. Fittings or sensing lines blocked, pinched, or leaking.
 4. Cover loose or "O" ring damaged, missing.
 5. Pressure sensors, (static tips, Pitot tube, etc.) improperly located.
- Pointer stuck-gage can't be zeroed.
 1. Scale touching pointer.
 2. Spring/magnet assembly shifted and touching helix.
 3. Metallic particles clinging to magnet and interfering with helix movement.
 4. Cover zero adjust shaft broken or not properly engaged in P/N 230-b adjusting screw.

We generally recommend that gages needing repair be returned to the factory. Parts used in various sub-assemblies vary from one range of gage to another, and use of incorrect components may cause improper operation or failure. Gages repaired at the factory are carefully calibrated and tested to assure "like-new" operation. After receipt and inspection, we will be happy to quote repair costs before proceeding.

Consult factory for assistance on unusual applications or conditions.
Use with air or compatible gases only.
Magnehelic® Gage
EXPLODED VIEW
Series 2000

Ordering Instructions:
When corresponding with the factory regarding Magnehelic® gage problems, refer to the call-out numbers in this view. Be sure to include model number, pressure range, and any special options. Field repair is not recommended; contact the factory for repair service information.
BAG AND CAGE INSTALLATION

Installation of Bag and Cage Assembly – Bottom Loader

1. Inspect the filter bag cages for any signs of damage, warping, bent wires or missing welds.

2. Inspect the filter bags for any signs of mold, mildew, ripped seams or holes.

3. Be sure the wire cage has a bottom pan. Slip filter bag over the cage, centering the seam 1-½” or 2” on either side of the split at the top of the cage roll band. Seam must be straight (not corkscrewed).

4. Pull bag up and over the full length of the cage and fold the entire extra length over and down into the top of the cage. Make sure the bag bottom is tight against the cage pan. Smooth out all folds and pleats on the interior of the roll band.

5. Slip the assembled bag and cage over the outside of the bag cup (mounted on the tube sheet) making sure to mate the male groove of the cage roll band top to the female groove of the bag cup.

6. If you try to move the assembly up and down, you will be able to tell if the grooves are properly aligned.

7. Install the bag clamp on the assembly and tighten around the bag and cage at the point just above the groove on the cage. The clamp head should be located in the best position for ease in tightening.

8. Tighten the clamp until secure. You should not be able to rotate the bag-cage assembly by hand if it is tighten properly.

9. Close the access door and tighten accordingly. You are ready to begin start-up procedures if all other preceding task and hook-ups are completed.

10. It is recommended to double check the tightness of the bag and cage assembly approximately one month after the initial start-up.
PRODUCT HIGHLIGHT

INSTALLATION OF RAW EDGE BAGS ON ROLL BAND TOP CAGE FOR BOTTOM LOAD COLLECTORS

Before bagging your bottom load dust collector, verify which style of cages you have and follow the corresponding instructions. Instructions for the ring top style cage are on the reverse of this sheet.

1. Insert cage into bag so that the bag seam is opposite the gap in the roll band top. Pull the bag over the cage until the bottom of the bag is against the cage bottom.

2. Fold the top of the bag inside the cage. The bag should extend down inside the roll band top to below the first groove (see figure 1). Smooth the folded fabric and distribute any excess fabric into several small pleats instead of one large one. Sleeve top bags are assemblies the same way.

3. Loosely install a new clamp around the top of the bag/cage combination, with the clamp screw positioned midway between the gap in the roll band top and the bag seam (see figure 2). The clamp should be seated over the first groove, just tight enough to stay in place. Install a new optional felt seal around the bag cup. This seal helps prevent leakage of fine particulate.

4. Slide the bag/cage combination over the bag cup which is below the tubesheet. The bead on the inside of the cage (the back of the groove) should be squarely in the groove of the bag cup with the fabric of the bag between the cage top and the bag cup (see figure 3).

5. Using a socket wrench, tighten the clamp securely, making sure it stays in place over the groove in the cage top. To prevent leakage it is important to use greater than usual torque on the clamp for this application (50–60 in-lbs for slotted band type clamps). During tightening, rock the cage slightly to ensure the grooves are mating properly. After tightening you should not be able to rotate the bag and cage by hand. Overtightening can strip the clamp.

Note: If the clamp is placed too high, is not tightened adequately or the fabric is not past the groove, leakage may occur. **Do not re-install used clamps.**
1. Insert the cage into the bag so that seam is opposite the gap in the annular ring. Pull the bag over the cage until the bottom of the bag is against the cage bottom.

2. Fold the bag top over the top wire of the cage (see figure 1). Smooth the folded fabric and distribute any excess fabric into several small pleats instead of one large one.

IMPORTANT: Make sure bag top does not extend below split annular ring. The bag and cage cannot be mounted correctly if fabric covers the ring. If the bag is a little long, slide cage up slightly from the bottom of the bag until foldover top is positioned above the annular ring or cut the open end of the bag off.

3. Loosely install a new clamp over the bag/cage combination and locate it 1”–1½” below the top of the bag. Tighten only enough to hold in place. Install a new optional felt seal around the bag cup. This seal helps prevent leakage of fine particulate.

4. Slide bag/cage combination over the bag cup located below the tubesheet until the annular ring engages the groove in the bag cup.

5. Using a socket wrench, tighten the clamp securely. To prevent leakage it is important to use greater than usual torque on the clamp for this application (50–60 in-lbs. for slotted band type clamps). During tightening, rock the cage slightly to make sure the ring is engaged in the bag cup groove. After tightening, you should not be able to rotate the bag and cage by hand. Over tightening can strip the clamp.

Note: Do not reinstall used clamps.
BAG AND CAGE INSTALLATION (continued)

Installation of Bag and Cage Assembly – Top Loader

1. Inspect the cages for any signs of damage, warping, bent wires or missing welds.

2. Inspect the filter bags for any signs of mold, mildew, ripped seams or holes.

3. Remove the blowpipes inside the clean air plenum by loosening the bulkhead fitting on the air header end of the blowpipe and then slide the pipe out of the bulkhead fitting. Some CAMCORP dust collectors use a retaining clip on the opposite end of the blowpipe and it has to be removed before removal of the blowpipe is possible.

4. Lower the closed end of the bag through the hole in the tube sheet and carefully feed the bag in. Make sure that the bag doesn’t scrap against the sides of the tube sheet hole. Excessive scraping can damage filter bags with special coatings or finishes.

5. With your hands, “kidney shape” the snap band bag top in order to fit and align it within the tube sheet hole.

6. Fit the groove of the snap band to the I.D. of the tube sheet hole and allow it to expand and audibly snap into place. If the band will not snap into place initially, do not push on the “dimple”, as doing this will permanently damage the snap band. Instead, kidney shape the snap band from the opposite side of the dimple. Then you can allow the band to expand and audibly snap into place.

7. Check the fit of the snap band in the tube sheet hole. It should be even in height above the tube sheet around the entire circumference, which will confirm to the installer that the filter bag is centered and well secured in the tube sheet.

8. Lower the cage into the bag and press that cage top down into the bag’s snap band I.D. When in position, the rolled flange of the cage top will rest on the tube sheet and the bag and cage assembly will be rigidly mated.

9. Replace the blowpipes in the opposite order stated in Step 3. Make sure that the orifices in the blowpipes are properly oriented to blow straight down the center of the bag and cage assembly before tightening the bulkhead fitting.

10. Replace access doors and tighten accordingly. You are ready to begin start-up procedures if all other preceding tasks and hook-ups are completed.
PRODUCT HIGHLIGHT

BEADED SNAPBAND FILTER BAG DESIGN FOR FLAT TUBESHEET HOLE

The snapband was developed to improve sealing efficiency. This design eliminates multiple parts, minimizing labor expenses. Camcorp provides a uniform double beaded gasket in the cuff assembly. This assures a leakproof seal for flat plate tubesheet holes. When installing the bags, follow instructions provided.

PROPER INSTALLATION OF THE CUFF

1. Form the snapband into the shape of a kidney. The vertical seam in the cuff should be on the outer radius of the kidney shape.

2. Seat the seam of the cuff into the hole first with the tubesheet fitting between the beads, with one above and one below it.

3. Release the band and it will spring securely into place. Use caution, and ensure all fingers are out of the tubesheet opening when the snapband is released. Make sure the snapband fits squarely in the hole and there are no kinks in the metal band.

NOTE: If you are converting to a snapband bag from some other type of sealing method, the tubesheet holes must be inspected carefully to ensure that proper sealing will result. The surface finish on the inside diameter must be relatively smooth. Any deep grooves or protrusions will cause leakage. A hole that was flame cut, but not ground smooth is one example. The tubesheet holes must be consistent in circumference from one hole to another.

If the circumference difference is determined by measuring, the holes should be checked to the nearest 0.001 in. Slight out-of-roundness is acceptable. Take three measurements for each hole and record the average of these three measurements. Compare all the hole averages. The difference between the largest average and smallest average hole size should not exceed 0.020 in. Try sample cuff in largest and smallest hole to confirm proper fit.

When checking the sample snapband in the hole for fit, push on the edge of the snapband slightly with your thumb to try and move it inward. If a gap occurs easily between the snapband and the edge of the tubesheet hole, leakage may result. If the inside surface of the hole is smooth, check the cuff fit by trying to spin the cuff in the hole. If it spins easily, it may leak.
COMPRESSED AIR REGULATOR INSTALLATION INSTRUCTIONS

With some dust collectors a filter/regulator is shipped loose with galvanized connectors and ball valves. The compressed air manifold is supplied with (2) 1” couplings (1 at each end), to allow the installer to bring a compressed air line to either end. The other coupling should be plugged.

INSTALLATION

1. Choose end of header for compressed air inlet.

2. Assemble pipe fittings and ball valve as shown in Fig. 2-b, using Teflon tape on all pipe threads.

3. Connect the filter/regulator to the 3/8” close nipple so the airflow is in the direction of the arrows indicated on the filter/regulator unit.

4. Connect the pressure gauge to appropriate side of the regulator and put a plug in the opposite side.

5. On opposite side of the compressed air manifold, install pipe fittings and ball valve as shown in Fig. 2-a and this will serve as a drain valve and air bleed off.
START-UP CHECKLIST

1. Installation

Make sure the unit is secured to the floor or mounting surface. The ladder(s) and platform(s) must be tightened and set up according to OSHA requirements. Ducting and piping must be secured and routed out of the way of traffic whenever possible to avoid injury. Ducting must also be free of all debris including moisture.

2. Interior of the dirty air plenum

A. In bottom bag removal collector, inspect the filter bag assemblies referring to the “Bag and Cage Installation” section of this manual. Improperly installed bags may allow dusty air to enter the clean air plenum and will shorten bag life.

B. Make sure that the filter bag assemblies hang straight and the bottoms do not touch each other or any part of the collector interior. If this occurs, the bags will develop holes in them wherever they contact and will require replacement.

C. High-level alarms should be connected sufficiently below the air inlet(s) to avoid a plugged up inlet or blinded off filter bags.

3. Interior of clean air plenum

A. The blowholes in the blowpipes must be centered over the bags.

B. On top bag removal collectors, check to see that bags and cages are properly installed.

C. On top bag removal collectors, the bulkhead fittings must be check for proper tightness and that the blowpipes are secured.

4. Exterior of dust collector

A. Access doors, inspection ports and spring-loaded relief vents should seat effectively to prevent leakage.
START-UP CHECKLIST (continued)

B. All bolts must be properly tightened.

C. Operate any equipment connected to the dust discharge of the dust collector. Check the rotation of any motor driven equipment such as rotary airlocks, horizontal unloading valves, live bottom bin activators and screw conveyors. Check slide gates and butterfly valves for binding.

5. Explosion relief panels – shear bolt style (when used)

Inspect explosion relief vents (when used) for broken or damaged explosion bolts. **MAKE SURE THERE ARE NO STEEL BOLTS USED FOR THE INSTALLATION OF THE EXPLOSION RELIEF PANEL!!!** These bolts are made of special high tech poly-vinyl chloride and are designed to relieve at a specific pressure. A magnet should be used to check for steel bolts.

6. Compressed air system

A. The pulse timer board must be correctly wired and mounted in its enclosure in a suitable location.

B. All the ¼” copper or nylon tubing connections between the diaphragm and the solenoid valves must be tight and the tubing must not be crimped.

C. The plugs (when used) must be removed from the exhaust ports of the solenoid valves and the tubing from the diaphragm valves must be connected to the “IN” port on the solenoid valves.

D. The compressed air supply system must be equipped to supply clean, dry air to the pulsing air system. At this time, make sure that there is a suitable air pressure gauge on the air header for reading 0-160 psig.

E. Start the compressed air supply system and check for air leaks in all parts of the system. If air is heard escaping through one or more of the blowpipes (with the timer off), please refer to the “Troubleshooting the Compressed Air System” section of this manual. Gauge pressure at the compressed air manifold(s) should be 90-100 psig.
START-UP CHECKLIST (continued)

F. With the compressed air system operating, energize the timer to begin pulsing. Check to see that all solenoids are firing by placing a finger over the exhaust port of the solenoid valve. When the solenoid valve being checked is triggered by an electrical pulse from the timer, the finger at the exhaust port should feel a short blast of air. Quickly move to the next solenoid valve in the firing order, noting any valves that do not fire or are stuck open, causing a continuous airflow out of the exhaust port of the valve. At this time, note the quality of the compressed air. It should be clean, dry, and oil free.

G. Allow the compressed air system to operate as long as possible to clear the system of dirt, rust, scale, welding slag and metal chips that can cause the diaphragm valves to stick.

H. The pressure at the compressed air manifold must recover to 90-100 psig before each pulse. Make sure that there is adequate compressed air delivery for full pressure recovery when all other systems connected to the same air supply are operating at full capacity.
START-UP DUST CONTROL SYSTEMS

1. Fan or blower system

 A. Start the fan or blower and check for proper rotation.

 B. Check dust pickup points for proper suction; balance airflow in individual ducts.

 C. Check for air leakage at all flanged connections.

2. Equipment start-up sequence

 A. The compressed air supply system must be started first.

 B. When the pressure gauge on the compressed air manifold indicates that the system is at full pressure (90-100 psig), the pulse timer can be energized.

 C. Dust take away equipment such as rotary airlocks, screw conveyors, horizontal unloading valves, live bottom bin activators and pneumatic conveying systems can now be started in their correct sequence.

 D. Check that all access doors, hatches, ports, and other openings are closed and latched or bolted.

 E. The main exhaust fan can now be started and brought up to speed.

 F. Start the dust laden air through the collector. The collector should be started under partial load to allow the bags to become slowly and evenly coated with dust particles.

 On pneumatic conveying systems, watch the differential pressure gauge closely for the first hour or so. If unstable, the collector discharge system may be too small for the volume it is seeing. A quick fix is to reduce the material feed until the discharge rate can be increased.
G. Observe the manometer or magnahelic differential pressure gauge reading. As the new filter bags become coated with dust, the efficiency of the filtering action increases and the differential pressure across the filter bags will also increase. Slowly bring the collector to full load and note the final pressure drop across the filter bags. Never allow the pressure drop across the filter bags to exceed 17” w.g. maximum or the filter bags may collapse.

Note: If the pressure drop continues to increase over 5” w.g. and does not stabilize, decrease the timer “off time” to fifteen seconds. Should adjustment of the timer “off time” fail to cause the pressure drop to stabilize below 5” w.g., shut down the collector and refer to “Troubleshooting the Collector” or call your CAMCORP representative.

H. When the collector has stabilized, the timer “off time” interval may be slowly increased for the most economical use of compressed air. As the “off time” is increased, the differential pressure will also increase. Readings up to 6” w.g. are acceptable; however, we recommend operating at 3”-4” w.g. for maximum filter bag life. The timer “off time” may be decreased when lower differential pressure readings are desired. When adjusting the “off time” interval, proceed in small steps allowing the differential pressure to stabilize for several hours between increments.

I. Check the main airflow with a pitot tube, or equivalent measuring device, to establish initial conditions. If the main airflow must be adjusted up or down to suit the process, repeat step 2-H above.
SHUT-DOWN PROCEDURES

1. Dust control systems

 Reverse start-up procedure, shut down fan, then after 5 or 10-minute delay, shut down the timer and discharge system.

2. Pneumatic systems

 Reverse start-up procedure, shut down fan, then after 5 or 10 minute delay, shut down the timer and discharge system.
TROUBLESHOOTING THE DUST COLLECTOR

I. Excessive pressure drop across filter bags

The differential pressure gauge or manometer on your dust collector should read 6” w.g. or less. Higher readings and/or steadily increasing readings are an indication that the main airflow through the dust collector may be restricted and a potential process problem such as poor suction at duct pickup points may exist. In extreme cases (over 17” w.g.) filter bags will be damaged. Check the following:

A. Pressure Gauge

Check the differential pressure gauge or manometer and the tubing leading to the dust collector for proper operation. Disconnect the lines at the gauge or manometer and clear with compressed air. Look for loose fittings, cracked, broken or pinched tubing. Make sure that the gauge is zeroed or that the manometer is level, zeroed and contains the correct fluid.

B. Compressed Air System

Inspect the compressed air system as follows to make sure that all of the filter bags are being cleaned:

1. If none of the solenoid valves are operating, check the timer using the “Troubleshooting the Timer” section.

2. Check the air pressure at the compressed air manifold. It should recover to 90-100 psig before each pulse. If not, check to make sure that the compressed air supply system is in good operating condition, correctly sized and supply lines are not too small or restricted. Listen for the sound of compressed air flowing continuously through one or more rows of filter bags, an indication of a valve or valves “stuck” in the pulsing position. The usual causes for this condition are either a leak in the tubing between the solenoid and diaphragm valves or dirt in the solenoid and/or diaphragm valves.

3. Check to see that all solenoid valves are firing by holding a finger over each solenoid exhaust port as described in item 6A-6H in the “Start up checklist” section.
TROUBLESHOOTING THE DUST COLLECTOR (continued)

C. Bags Loaded with Dust

A condition known as blinding. If the dust is dry, see paragraph 1-4; if the dust is wet, see paragraphs 5 and 6.

1. Dust Not Discharging from the Hopper

Check hopper for over-loading or bridging across the dust discharge. Correct by repairing dust discharge equipment, replacing with higher capacity equipment, installing hopper vibrators, etc. as required to keep the hopper empty.

2. Air Flow too High

If the main airflow is too high to allow dust to drop off of the filter bags, an excessive pressure drop across the dust collector will result and dust will build up in the system. In many cases this high pressure drop in turn leads to a reduction in the main air flow so that it is necessary to remove the dust accumulation from the filter bags (and the rest of the system) before measuring the main air flow volume.

Visually inspect the bags for heavy caking; if caking is evident, see the note below and take the necessary action to clean the bags. Next, measure the main airflow with a pitot tube or equivalent device and compare with the original volume for which the unit was designed. If the flow is too high, cut back the main fan to prevent a recurrence of the problem.

3. Particle Size and Dust Load

If possible, compare the dust particle size and loading with the original design specifications. Finer dust may cause a higher pressure drop. Do not hesitate to call CAMCORP; we have experience with many kinds of dust.

4. Bags Too Tight

Bags that have shrunk on their cages may not flex sufficiently during the compressed air pulse to loosen caked dust. If the bags were cleaned or laundered, pull a bag tight around its cage; you should be able to “gather” a small fold of material between your fingers.
TROUBLESHOOTING THE DUST COLLECTOR (continued)

5. Water Leaks

Inspect the dust collector housing and ductwork for holes, cracks or loose gasketing where water could enter the collector.

6. Condensation

If moisture has been condensing inside the collector, check the dew point temperature of the incoming air stream. It may be necessary to insulate the collector and/or the ductwork leading to the collector to keep surface temperatures above the dew point and prevent condensation on the filter bags.

NOTE: Collectors that have had blinded or bags caked can possibly be put into service by running the pulsing air system for 15 to 30 minutes with a 10 second “off time” and without the main fan or blower running. If the pressure drop is not lower when the main fan is started again, remove the filter bags from the collector and remove the caked dust by special dry-cleaning. Make sure the timer “off time” has been reset to specifications prior to re-start. Information pertaining to filter bag cleaning may be obtained by calling your CAMCORP sales representative.

II. Extremely Low Pressure Drop

A. Differential Pressure Gauge

Check the differential pressure gauge or manometer and the tubing leading to the dust collector as in I-A of this section.

B. Holes in Filter Bags or Bags Incorrectly Installed.

Inspect the filter bags for holes, rips, tears or excessive wear. Make sure that the filter bags were installed correctly according to the “Bag & Cage Installation” section.

C. Ductwork and Dampers

Inspect the ductwork to and from the dust collector for air leaks or blockage. Make sure that any dampers in the system are correctly positioned to allow for proper air flow through the dust collector.
TROUBLESHOOTING THE DUST COLLECTOR (continued)

D. Leaks in the Housing

Check the tube sheet (flat steel sheets from which the filter bags are suspended) and the dust collector housing for holes, cracks or loose gasketing that would permit air to bypass the dust collector or filter bags.

III. Continuous Flow of Dust in the Clean Air Exhaust (Primary Dusting)

A. Holes in the filter bags or bags incorrectly installed

Inspect the filter bags as in II-B this section.

B. Holes in the tube sheets

Check the tube sheet for holes, cracks or loose bolts that would permit dusty air to bypass the filter bags.

IV. Puff of dust in the clean air exhaust after each pulse (secondary dusting)

A. Compressed air manifold pressure too high

Check compressed air manifold pressure gauge. If the pulsing air pressure is over 100 psig the filter bags may flex excessively and allow fine dust to pass through the bag material.

B. Worn filter bags

Inspect the filter bags for wear. Thin worn bags may not stop fine dust when flexed by a compressed air pulse.

C. Residual dust

If dust has gotten into the clean air plenum because of a dropped filter bag, torn filter bag or a hole in tube sheet, etc., the pulsing air may stir up the dust and allow it to escape into the clean air exhaust after each pulse. Residual dust may also be driven down inside the filter bags by the pulsing air. If the filter bags are filled with several inches of dust, clean both the clean air plenum and the filter bags to avoid further problems.
V. Short Filter Bag Life

This is often a complicated problem to diagnose and we recommend calling the factory for advice. The following list may be helpful in performing some preliminary checks:

A. Temperature

Operating Temperature above the recommended limit of the filter bag material.

B. Chemical attack

Bag material degrades due to attack from certain chemicals in the dust or gasses in the air stream.

C. High moisture

High moisture content in the collector may cause certain filter bag material to shrink, degrade (more rapidly at elevated temperatures) or blind off.

D. Localized abrasion

Abrasion of the bags at the dusty air inlet; a dust impingement baffle may be required.

E. Filter bag cages failure

Corroded, rusted or broken filter bag cages can cause excessive bag wear. Stainless steel or coated cages are available.
TROUBLESHOOTING THE TIMER

1. Check for mechanical damage.

2. If the “Power On” indicator is not on, check for 120 VAC power input. The “hot” line connection must be connected to terminal “L1”, as this is the fused terminal.

3. Check for a blown fuse; if replacement is necessary, use only 2 AMP standard 3AG fuse (1-1/4” long). **Do not use a slow-blow type fuse.**

4. Check the wiring from the timer to the solenoids for open or short circuits.

5. After performing steps 1-4, if the timer is still not functioning properly (no output voltage, sequencing problems, etc.) please contact your CAMCORP representative.
TROUBLESHOOTING THE COMPRESSED AIR SYSTEM

I. Pulsing failure of all valves or the same numbered valve on each header
 A. Pulse timer board inoperative

 Check pulse timer board for 120 VAC pulse between each numbered terminal on timer board and solenoid common terminal. Repair or replace timer if necessary.

 B. Open or short circuit in wiring between pulse timer board and solenoids

 Check continuity with ohmmeter or suitable tester and repair as required.

II. Pulsing failure of valves at any location
 A. Plastic plug in solenoid exhaust port

 Remove and discard plug.

 B. Ruptured diaphragm

 Disassemble valve in question and inspect diaphragm(s). Replace with a repair kit if necessary.

 C. Pinched or plugged tubing between solenoid and diaphragm valve.

 Inspect tubing and replace if necessary.

III. Continuous passage of compressed air through one of more blowpipes
 A. ¼” O.D. tubing or fittings disconnected, leaking or broken.

 Inspect and repair as required. Always use new ferrules in fittings when replacing copper tubing.

 B. Diaphragm valve air bleed hole or passage restricted

 Disassemble and inspect the diaphragm valve in question as follows:

 ➢ ¾” valves – check for plugged air bleed hole in diaphragm.

 ➢ 1” valves – check for plugged air bleed passages in valve body and cover.

 ➢ 1 ½” valves – check for plugged or restricted air bleed passages.
SAFETY RECOMMENDATIONS

Because this unit may be under pressure or vacuum, do not attempt to open any device, doors or panels while fans or blowers are running. The unit has air hoses and valves with a maximum recommended operating pressure of 100 psig. To eliminate the danger of bursting, care must be taken to insure maximum desired pressure is not exceeded.

Before servicing any portion of the compressed air system, the air supply must be shut off and any pressure relieved.

If your unit is equipped with a discharge auger or an airlock, be sure chain guards are installed before start-up and servicing is attempted only after electrical power is locked out.

While servicing the filter, it is very important that there are no open flames, welding or grinding sparks. Dust laden air could be highly explosive and extreme care must be taken. Most filter bags will burn if exposed to sparks, welding or open flames.

Before entering any dust collector:

1. Run cleaning mechanism 20 minutes with the fan off to clean filter bags.
2. Discharge dust solids from hopper.
3. Shut off compressed air supply and relieve pressure in the compressed air manifold.
4. Lock out all electrical power on all equipment especially rotating equipment.
5. On toxic operation, purge collector housing and install a blank in the inlet duct.
6. Install catwalks and safety cables.
7. Secure access doors in an open position or remove doors.
8. Use buddy system.
9. Wear a respirator.
10. Use common sense.
ROUTINE MAINTENANCE

A. Inspection

Frequency will vary as widely as there are operating conditions. In general proceed as follows:

1. Daily – Check unit differential pressure.

2. Weekly – Check pulse timer board and solenoid valves for function. This usually is only listening to check uniform time in intervals between blasts.

3. Monthly – Lubricate fan, rotary valve and screw conveyor. Check seals on latter two for dust loss.

B. Repairs

1. Filter bags – Generally replacement, although some applications can be laundered.

2. Solenoid Valves – Repair kits are available if a valve is stuck open or fails to operate.

3. Diaphragm Valves – Repair kits are available if a valve is stuck open or fails to operate due to a ruptured diaphragm.

4. Rotary Valves – Usually a matter of periodic seal and blade replacement. More detailed information is supplied with the valve.

5. Screw Conveyors – Periodic replacement of “V” belts and shaft seals. Inspect hanger bearings during filter bag change. Failure will be detected by the squeal.

CLEAN AIR MANAGEMENT COMPANY, INC.
8224 Nieman Road • Lenexa, Kansas 66214 Phone: 913-831-0740 Fax: 913-831-9271